↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval(TRUE, x) → eval(-@z(x, 1@z))
eval(x) → Cond_eval(&&(=@z(%@z(x, 2@z), 0@z), >@z(x, 0@z)), x)
Cond_eval(TRUE, x0)
eval(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval(TRUE, x) → eval(-@z(x, 1@z))
eval(x) → Cond_eval(&&(=@z(%@z(x, 2@z), 0@z), >@z(x, 0@z)), x)
(0) -> (1), if ((x[0] →* x[1])∧(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)) →* TRUE))
(1) -> (0), if ((-@z(x[1], 1@z) →* x[0]))
Cond_eval(TRUE, x0)
eval(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)) →* TRUE))
(1) -> (0), if ((-@z(x[1], 1@z) →* x[0]))
Cond_eval(TRUE, x0)
eval(x0)
(1) (EVAL(x[0])≥NonInfC∧EVAL(x[0])≥COND_EVAL(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)), x[0])∧(UIncreasing(COND_EVAL(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)), x[0])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)), x[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)), x[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)), x[0])), ≥)∧0 ≥ 0)
(5) (0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)), x[0])), ≥)∧0 = 0)
(6) (&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z))=TRUE∧x[0]=x[1]∧-@z(x[1], 1@z)=x[0]1 ⇒ COND_EVAL(TRUE, x[1])≥NonInfC∧COND_EVAL(TRUE, x[1])≥EVAL(-@z(x[1], 1@z))∧(UIncreasing(EVAL(-@z(x[1], 1@z))), ≥))
(7) (>@z(x[0], 0@z)=TRUE∧>=@z(%@z(x[0], 2@z), 0@z)=TRUE∧<=@z(%@z(x[0], 2@z), 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[0])≥NonInfC∧COND_EVAL(TRUE, x[0])≥EVAL(-@z(x[0], 1@z))∧(UIncreasing(EVAL(-@z(x[1], 1@z))), ≥))
(8) (x[0] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z))), ≥)∧-1 + (-1)Bound + (2)x[0] ≥ 0∧0 ≥ 0)
(9) (x[0] + -1 ≥ 0∧max{2, -2} ≥ 0∧(-1)min{2, -2} ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z))), ≥)∧-1 + (-1)Bound + (2)x[0] ≥ 0∧0 ≥ 0)
(10) (2 ≥ 0∧x[0] + -1 ≥ 0∧2 ≥ 0∧4 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z))), ≥)∧-1 + (-1)Bound + (2)x[0] ≥ 0∧0 ≥ 0)
(11) (2 ≥ 0∧x[0] ≥ 0∧2 ≥ 0∧4 ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z))), ≥)∧1 + (-1)Bound + (2)x[0] ≥ 0∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(=@z(x1, x2)) = -1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = 2
POL(2@z) = 2
POL(COND_EVAL(x1, x2)) = -1 + (2)x2
POL(EVAL(x1)) = (2)x1
POL(FALSE) = 2
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%@z(x1, 2@z)1 @ {}) = max{x2, (-1)x2}
POL(%@z(x1, 2@z)-1 @ {}) = min{x2, (-1)x2}
EVAL(x[0]) → COND_EVAL(&&(=@z(%@z(x[0], 2@z), 0@z), >@z(x[0], 0@z)), x[0])
COND_EVAL(TRUE, x[1]) → EVAL(-@z(x[1], 1@z))
COND_EVAL(TRUE, x[1]) → EVAL(-@z(x[1], 1@z))
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
Cond_eval(TRUE, x0)
eval(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
Cond_eval(TRUE, x0)
eval(x0)